指数与指数幂的运算,函数的分类有什么?

函数的分类有什么? 函数的分类有什么? 对于高中生而言,主要接触的是初等函数,初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除…

函数的分类有什么?

  • 函数的分类有什么?
  • 对于高中生而言,主要接触的是初等函数,初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数。基本初等函数和初等函数在其定义区间内均为连续函数。非初等的在高中主要接触的是分段函数,当然,函数是多种多样的,关于较复杂函数的一些分类标准会在大学高等数学(也说微积分)课上学习 。

幂函数、指数函数、对数函数的历史

  • 幂函数、指数函数、对数函数是什么时候发明的,是谁发明的,有没有人知道详细的历史? 急求!!!!!
  • 对数函数的历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数。 德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。 欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。 纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方 法,其核心思想表现为算术数列与几何数列之间的联系。在他的《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳皮尔对数,记为Nap.㏒x,它与自然对数的关系为 Nap.㏒x=107㏑(107x) 由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。 瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620)。 英国的布里格斯在1624年创造了常用对数。 1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828…为底)。 对数的发明为当时社会的发展起了重要的影响,正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」。又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。 最早传入我国的对数著作是《比例与对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫「真数」,0.3010叫做「假数」,真数与假数对列成表,故称对数表。后来改用 「假数」为「对数」。 我国清代的数学家戴煦(1805-1860)发展了多种的求对数的捷法,著有《对数简法》(1845)、《续对数简法》(1846)等。1854年,英国的数学家艾约瑟(1825-1905) 看到这些著作后,大为叹服。 当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年 ,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《无穷小 分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和现在教科书中的提法一致。

幂的乘方怎样算呀?我搞不懂~求解哦!

  • 等等类似这些的 我都好懵 不是说括号内是负数如果次方是偶数这个数也变为整数吗?还有什么变号的怎么变啊 求解啊!怎样化为同底数 同底数的时候要变号吗?幂的乘方直接运用 幂的乘方与同底数幂乘法的混合运算幂的乘方法则的逆运用 我都不会啊怎么办还有那些计算题 求解ps:帮我解释 可不可以拿几道例题再讲给我听呢?谢谢哦!我数学基础不太好 感觉学习来好困难
  • 同底数幂相乘,底数不变,指数相加如果是异号,例如-3的x平方X3的x立方确定符号为-(3的x平方X3的立方)=-(3的x五方)给我分

高中数学有哪些知识点

  • 高中数学有哪些知识点
  • 第一章 集合与函数概念1.集合的概念及其表示意思;2.集合间的关系;3.函数的概念及其表示;4.函数性质(单调性、最值、奇偶性)第二章 基本初等函数(I)一.指数与对数1.根式;2.指数幂的扩充;3.对数;4.根式、指数式、对数式之间的关系;5.对数运算性质与指数运算性质二.指数函数与对数函数1.指数函数与对数函数的图像与性质;2.指数函数y=ax的关系三.幂函数 (定义、图像、性质)第三章 函数的应用一.方程的实数解与函数的零点二.二分法三.几类不同增长的函数模型四.函数模型的应用 必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,; 当时,; 当时,不存在.②过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有……余下全文

各位帮忙看一看这道题?

  • 所有题
  • 你的题有点多,但是都属于一类,就是幂的运算1幂的运算(一)同底数幂的乘法:am×an=a(m+n)(a≠0, m, n均为正整数,并且mn)(1)同底数幂的乘法的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式。(2)指数都是正整数(3)可以推广到三个或三个以上的同底数幂相乘,即am·an·ap….=am+n+p+…(m, n, p都是正整数)。(4)乘法是只要求底数相同则可用法则计算,即底数不变指数相加。(二)同底数幂的除法:am÷an=a(m-n)(a≠0, m, n均为正整数,并且mn)(1)同底数幂的除法,底数a是不能为零的,否则除数为零,除法就没有意义了。(2)同底数幂的两个幂相除,如果被除式的指数与除式的指数相等,那么商等于1,即am÷an=1,m是任意自然数。a≠0, 即转化成a0=1(a≠0)。(3)同底数幂的两个幂相除,如果被除式的指数小于除式的指数,即m-n0时,指数部分为负整数则转化成负整数指数幂,再用负整数指数幂法则。(三)幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n(1)幂的乘方,(a^m)^n=a^(mn),(m, n都为正整数)运用法则时注意以下以几点:①幂的底数a可以是具体的数也可以是多项式。②要和同底数幂的乘法法则相区别。(2)积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意以下几点:①积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。②积的乘方可推广到3个以上因式的积的乘方。

七年级下册数学所有概念总结

  • 人教版的(是我寒假数学作业,明天就要报名了,求好心人救急)
  • 七年级下册数学知识点(性质.定理.概念) 第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且mn).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相……余下全文

初三上学期数学所有概念

  • 只要上学期,
  • 一、分式1、 同底数幂相除,底数不变,指数相减。am an=am-n(a 0)2、 两个单项式相除,只要将系数及同底数幂分别相除。3、 形如 (A、B是整式,且B中含有字母,B 0)的式子叫做分式。 =0(A=0,B 0)。4、 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。约分后,分子与分母不再有公因式的分式称为最简分式。分式运算的结果一定要是最简。5、 最简公分母是各分母所有因式的最高次幂的积。6、 在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原方程的解(或根),这种根称为增根。因此,在解分式方程时必须进行检验。7、 任何不等于零的数的零次幂都等于1。a0=1(a 0)8、 任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。a-n=( )n= (a 9、 用科学记数法表示一些绝对值较小的数,即将它们表示成a 的形式,其中n是正整数,1≤ <10。例如0.000021=2.1 二、一元二次方程1、 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一般形式:ax2+bx+c=0(a、b、c是已知数,a 其中a、b、c分别叫做二次项系数、一次项系数和常数项。2、 一元二次方程的解法:(1)直接开平方法(2)因式分解法(十字相乘法)(3)公式法x= (b2-4ac (4)配方法(重点见P32)3、 一元二次方程根的判别式( 2-4ac)当a 时(1) >0时方程有两个不相等的实数根;(2) =0时方程有两不相等的实数根;(3) <0时方程没有实数根4、 一元二次方程根与系数关系(韦达定理):ax2+bx+c=0(a、b、c是已知数,a 当 ≥0时,设方程两根为x1,x2则x1+x2=- ,x1 x2= 如 = =……5、 以x1,x2为根的一元二次方程为: 三、二次函数 2、抛物线 的对称轴是 轴,顶点是原点,当 时,开口向上,当 时,开口向下。 四、图形的全等1、能够完全重合的两个图形就是全等图形。互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。2、全等图形的对应边相等,对应角相等。3、全等三角形的识别(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简记(边边边或SSS)(2) 如果两个三角形有两边及其夹角分别对应相等,那么这个三角形全等。简记为(边角边SAS) (3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等,简记为(角边角ASA) (4)如果两个三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。简记为(HL) 4、能判断正确或是错误的句子叫做命题,命题常写成“如果……那么……”的形式,用“如果”开始的部分是题设,用“那么”开始的部分是结论。能判断其它命题真假的原始依据,这样的真命题叫做公理。有些命题可以从公理或其它真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其它命题真假的依据,这样的真命题叫做定理。根据题设,定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。五、圆1、 圆的有关概念:(1)、确定一个圆的要素是圆心和半径。(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。顶点在圆上,并且两边和圆相交的角……余下全文

浙江高考数学文科必考题

  • 2014浙江高考数学文科,有哪些知识点是必考的
  • 高考文科数学知识点 第一章 平面向量 【基础知识】 1.向量 2.向量的加法与减法 3.平面向量的表示方法 4.平面向量的坐标运算 5.实数与向量的积 6.平面向量的数量积 7.向量与实数 8.向量的性质 9.向量的夹角公式及应用 10.平面向量的基本定理 11.线段的定比分点 12.平面两点间的距离 13.平移 14.基础习题 【高考试题分类】 1.向量的线性运算 2.向量的数乘运算 3.向量的位置关系 4.向量的几何运算 5.有向线段与分比 6.比例综合计算 【综合性高考试题】 1.向量平衡性质的应用 2.向量的三角综合运算 第二章 集合与简易逻辑 【基础知识】 1.集合 2.子集和真子集 3.补集 4.交集 5.并集 6.韦恩图与摩根律 7.四种命题 8.逻辑联结词 9.常见数学逻辑符号 10.充分条件和必要条件 11.基础习题 【高考试题分类】2014高考复习全攻略知识点全集一模题库二模题库三模题库高考真题1.逻辑符号表达 2.集合性质的应用 3.集合定义问题 4.集合相等的判断 5.集合图形法的应用 6.两两相交的多个集合的并集的求法 7.命题与逆否命题 8.充要条件 【综合性高考试题】 1.集合的比较 2.集合与排列组合 第三章 函数 【基础知识】 1..映射和一一映射 2.坐标系和象限 3.函数和反函数 4..函数的单调性和奇偶性 5.函数的对称 6.函数的自身对称 7.定义域与值域 8.函数平移和坐标系平移 9.指数和对数 10.幂函数、指数函数和对数函数 11.一元二次函数的性质 12.基础习题 【高考试题分类】 1.函数的定义域与值域 2.函数图像的应用 3.函数与反函数的变换 4.函数对称的应用 5.函数平移和坐标系平移的应用 6.分角和倍角的象限 7.函数单调性和奇偶性的综合应用 8.幂函数、指数函数和对数函数的性质及图像 9.复合函数 10.一元二次方程与韦达定理的应用 11.分段函数的单调性 【综合性高考试题】 1.函数对称的延伸 2.函数与定点 3.函数的综合应用 4.信息定义 第四章 不等式【基础知识】 1.不等式的基础 2.不等式的基本性质 3.不等式的证明 4.几个重要公式 5.不等式的解法 6.含绝对值的不等式 7..绝对值不等式的解法 8.二元一次不等式与不等式区域 9.曲线的不等式区域 10.基础习题 【高考试题分类】 1.不等式公式的应用 2.几类不等式的最值求法 3.反证法和数学归纳法 4.不等式区域的应用 5.不等式方程的求解 6.分段函数不等式的求解 7.不等式与一元二次方程 8不等式方程和函数的综合 9.绝对值方程与绝对值不等式的应用 10.不等式应用 【综合性高考试题】 1.几类不等式的证明思想 2.数学归纳法思路 3.不等式的综合应用 4.一元二次方程的……余下全文

有没有好心人帮个忙,大一数学题 非常感谢!

  • 只要答案就可以了,
  • 一、①有界性②单调性③奇偶性④周期性二、(1)函数的定义域应写成集合或者区间的形式(2)函数的定义域是非空的(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集(5) 已知函数f(x)定义域求f【g(x)】的定义域 (6) 已知f【g(x)】的定义域求f(x)定义域(7) 函数的定义域与函数有意义是有区别的(8)实际问题中函数的定义域应具有实际意义三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数。以下六类函数统称为基本初等函数: (1)常值函数(也称常数函数) y =c(其中c 为常数) (2)幂函数 y =x a(其中a 为实常数) (3)指数函数 y =a x(a>0,a≠1) (4)对数函数 y =logax(a>0,a≠1) (5)三角函数: 正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx) 余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx (6)反三角函数: 反正弦函数 y =arcsinx 反余弦函数 y =arccosx 反正切函数 y =arctanx 反余切函数 y =arccotx 四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 。例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量。无穷大量的倒数是无穷小量。应该特别注意的是,无论多么大的数都不是无穷大量。五、(1)利用定义求极限 (2)利用函数的连续性求极限(3)利用两个重要极限求极限(4)利用四则运算法则求极限(5)利用迫敛性求极限(6)利用归结原则求极限(7)利用等价无穷小量代换求极限 (8)利用洛比达法则求极限(9) 利用泰勒公式求极限 (10)用导数的定义求极限(11)利用定积分求极限

八年级下学期数学

  • 八年级下学期数学第十一题
  • 1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 ( ) 3.分式的通分和约分:关键先是分解因式 4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1, 即 ;当n为正整数时, ( 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数) (1)同底数的幂的乘法: ;(2)幂的乘方: ; (3)积的乘方: ;(4)同底数的幂的除法: ( a≠0);(5)商的乘方: ();(b≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。解分式方程的步骤 : (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水. 8.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n位整数时,其中10的指数是 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章 反比例函数 1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k 2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点 3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。第十八章 勾股定理 1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。 2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。 3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 第十九章 四边形 平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。 平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 三角形的中位线平行于三角形的第三边,且等于第三边的一半。 直角三角形斜边上的中线等于斜边的一半。矩形的定义:有一个角是直角的平行四边形。矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD 矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。 3.有三个角是直角的四边形是矩形。菱形的定义 :邻边相等的平行四边形。菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。 2.对角线互相垂直的平行四边形

为您推荐

发表评论

电子邮件地址不会被公开。 必填项已用*标注

返回顶部